Who is online

We have 144 guests and no members online

Geometric educational instructional manual "Triangular Pyramid" and main transformations

Before starting working with the models it is necessary to be aware that for manipulations and transformations it is needed to work consistently only with each side separately. For the implementation of each of the following transformations it is needed to close consistently each of the sides up to the stop. 

Getting the geometric figures out of triangular pyramid model


Геометрическое учебное обучающее пособие "Треугольная пирамида" и основные трансформации

To implement the conversion it is necessary to close consistently each side of a triangular pyramid ABCD up to the stop and get the correct triangular pyramid (tetrahedron).





1. Romb–is obtained from the original pyramid through BD side stretching/pulling
Ромб



2. 
Quadrat- is obtained from therhomb through AC side stretching/pulling and DB shortening 


Квадрат





3. Trapezoiis obtained through stretching/pulling of the sides AB, as a result the diagonal AC and BD are stretched themselves
Трапецияd
4. Parallelogramisobtainedthroughstretching/pullingofthesidesDCandthediagonalAC. Here it is possible to demonstrate operation on vectors (addition and subtraction).

Параллелограмм




5.  Rectangle–is obtained stretching/pulling BD and shortening AC

прямоугольник



6.  Triangle


а) Close each side of the model sequentially up to the stop - the starting point is obtained
б) All sides of the base of pyramid ABC should be stretched/pulled until the edges DA, DB, DC will fit the four centers lie in a planeof the triangle ABC

7.  Test of equality of triangles

AD must be disconnected at point D, and the AC and BD have to be stretched/pulled until the top of D does not coincide with the vertex A.  
Watch the video "A triangular pyramid" with 0:56 seconds


8.  The characteristics of an isosceles triangle

Свойство равнобедренного треугольникаStarting position –is tetrahedron. In the beginning it is necessary to obtain a rhomb, and thenstretch/pull the rods CB, AB and DB.




9.  Pyramid

The pyramid can be obtained from the triangle (point 6)

 

ПирамидаThe top/vertex D starts to move away from the tops/vertexes A, B and C a triangular pyramid is being formed.


9.1 The correct triangular pyramid DА=DВ=DС и АВ=ВС=АС.


Теорема о трех перпендикулярах9.2 The projection of the triangle DAC in the plane of ABC is obtained by stretching DA and DC until DB does not become perpendicular to the plane of ABC.




 9.3 The theorem on three perpendiculars/verticals.

Теорема о трех перпендикулярахIt is necessary to stretch/pull the BC and AC until the side of the CA will not be perpendicular to AB. Studying the theorem of three perpendiculars, the pupils are asked to convert the four triangles of the pyramid ABCD into the right triangles which is not that simple. When repeated attempts of pupils are unsuccessful, the teacher, being inferior in resourcefulness to pupils, but superior in knowledge, shows the miracle about three perpendiculars.

треугольная пирамида9.4 

1.1   The planes (DCA) and (DBC) are perpendicular to the plane ABC. From this it follows that the line of intersection of the planes DC is perpendicular to the plane of ABC.




10A solution of the problem

Task. Given: a pyramid with ribs/links a, b, c, which are mutually perpendicular.Findthevolumeof the pyramid.
треугольная пирамида

1. Сложение. addition

СложениеДля сложения 2-х и более чисел подвешиваем их друг к другу к какой-либо отметке на левом плече. Чтобы найти ответ, к той же цифре на правом плече подвешиваем 10. Получаем следующее:
а) правое плечо тяжелее – снимаем число 10 и, подвешивая по очереди цифры, находим ту, при которой устанавливается равновесие
б) если правое плечо легче – то к числу 10 подвешиваем по очереди цифры и находим ту, при которой устанавливается равновесие.
 

To add 2 or more numbers hung them to each other to a mark on his left shoulder. To find the answer to the same figure on the right shoulder are suspending 10. We obtain the following:
a) the right shoulder heavier - remove the number 10, and hanging on the line numbers, we find that at which equilibrium is established
b) if the right shoulder easier - that among the 10 numbers are suspending in turn and find the one at which equilibrium is established.

 
 
 
 
 

2. Состав числа. The composition of the number.

Состав числа

Чтобы найти состав любого числа (меньше 10). Необходимо это число подвесить к любой точки на правом плече. Чтобы получить состав например 10, надо на левом плече к той же точки подвесить цифры в таком составе чтобы получить равновесие.

Комментарий: Важно отметить для равновесия необходимо, чтобы плечи левое и правое были одинаковы.

 

 

To find the composition of any number (less than 10). This number is necessary to suspend any point on the right shoulder. To obtain the composition of example 10, it is necessary on the left shoulder to the point of hanging figures in this format to get the balance.

Comment: It is important for balance requires that the left and right shoulders were the same.

 

3. Умножение. Multiplication.

umnozhenie

Например: Для получения ответа 9х7, подвешиваем 9 к отметке 7 на правом плече. Чтобы получить ответ на левом плече сначала надо найти десятки.
Алгоритм нахождения ответа: «Число 5 подвешиваем к отметке 10 (левое плечо), т.к. число 5 меньше, то подвешиваем 7, т.к. число 7 больше, то подвешиваем 6, т.к. 6 меньше, значит ответ десяток 6. По такому же принципу находим единицы на шкале 1
Пример: 4х7
Алгоритм: Число 5 подвешиваем к отметке 10 (левое плечо). Т.к. 5 больше, то подвешиваем 3, т.к. 3 больше, то подвешиваем 1, т.к. 1 меньше, значит десятки 2. Далее находим единицы по такому же принципу.

 

 

For example: To answer 9h7, hung around 9 to 7 on the right shoulder. To get the answer on the left shoulder first need to find dozens.
Algorithm for finding an answer: "The number 5 is suspended from the 10 mark (left shoulder), as 5 number less then 7 are suspending since the number 7 is greater then 6 are suspending since 6 smaller mean response dozen 6. The same principle find units on the scale 1
Example: 4h7
Algorithm: The number 5 is suspended from the 10 mark (left shoulder). Because 5 more, are suspending 3, because 3 more, are suspending 1 since 1 less then ten 2. Next, find the unit in the same way.

 

 

4. Вычитание и деление выполняется как противоположные действия сложению и умножению. Subtraction and division is performed as opposing the operations of addition and multiplication.

delenie b

Деление Для получения ответа на 56/8 подвешиваем 5 к отметке 10 а 6 к отметке 1 на левом плече.  На правом плече к отметке 8 подвешиваем 5. Так как 5 меньше, то подвешиваем 7, получается правильный ответ.

 

 Dividing To answer 56/8 are suspending 5 to around 10 to around 6 and 1 on the left shoulder. On the right shoulder to the mark 8 are suspending 5. Since 5 less then 7 are suspending, get the right answers.

 

 

5. Деление с остатком. Division with remainder

delenie ostatkom

Пример: 77/9.
На левом плече число 7 подвешиваем к отметке 10 на шкале и 8 к единице (получаем 78). Чтобы делить на 9 на правом плече шкалы к 9 подвешиваем число 5, т.к 5 меньше, то подвешиваем 7, т.к. 7 меньше, то подвешиваем 9, т.к. 9 больше, то подвешиваем 8, т.к. 8 меньше, то правильный ответ 8. Таким же алгоритмом находим остаток на шкале отметки 1
Весы очень полезны для демонстрации законов сложения и умножения.

 

 

Example: 77/9.
On the left shoulder number 7 is suspended from the 10 mark on the scale and 8 to one (get 78). To divide by 9 on the right shoulder of the scale to 9 are suspending number 5, because 5 is less, are suspending 7, as 7 less then 9 are suspending since 9 more, 8 are suspending since 8 less, the correct answer 8. In the same algorithm finds balance in the scale 1 mark.
Scales are very useful for demonstrating the laws of addition and multiplication.

 

6. Распределительный закон сложения и умножения. Distributive law of addition and multiplication.

raspredelitelni zakonа) Интересна демонстрация распределительного закона сложения и умножения, например, (3 + 9 ) х 7 = 7 х 3 + 7х 9. Цифру 3 подвешиваем к цифре 9 и обе подвешиваем к отметке 7, а к отметке 3 другого плеча подвешиваем цифру 7, другую цифру 7 к 9 и получаем равновесие.
 
б) демонстрация закона о перестановке мест слагаемых и множителей очевидна.
6x7=7x6, 6+7=7+6

 

a) An interesting demonstration of the distribution law of addition and multiplication, for example, (3 + 9) x 7 = 7 x 3 + 7x 9. The figure 3 is suspended from the number 9 and both suspended to around 7, and the mark of 3 other arm are suspending figure 7, another figure 7 to 9 and get a balance.

b) demonstration of the law of inversion of terms and factors evident.
6x7 = 7x6, 6 + 7 = 7 + 6

Who is online